ГДЗ по геометрии 7 класс Л.С. Атанасян номер / 910

показать содержание смотреть решения

910 Пусть Н — точка пересечения прямых, содержащих высоты неравностороннего треугольника ABC, а О — центр описанной около этого треугольника окружности. Используя векторы, докажите, что точка G пересечения медиан треугольника принадлежит отрезку НО и делит этот отрезок в отношении 2:1, считая от точки Н, т. е. HG/GO = 2.

учебник / номер / 910
910	Пусть Н — точка пересечения прямых, содержащих высоты неравностороннего треугольника ABC, а О — центр описанной около этого треугольника окружности. Используя векторы, докажите, что точка G пересечения медиан треугольника принадлежит отрезку НО и делит этот отрезок в отношении 2:1,
считая от точки Н, т. е. HG/GO = 2.
решебник №1 / номер / 910
910	Пусть Н — точка пересечения прямых, содержащих высоты неравностороннего треугольника ABC, а О — центр описанной около этого треугольника окружности. Используя векторы, докажите, что точка G пересечения медиан треугольника принадлежит отрезку НО и делит этот отрезок в отношении 2:1,
считая от точки Н, т. е. HG/GO = 2.