ГДЗ по геометрии 7 класс Л.С. Атанасян номер / 835

показать содержание смотреть решения

835 Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площадей трёх треугольников, прилежащих к боковым сторонам и меньшему основанию трапеции.

учебник / номер / 835
835	Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площадей трёх треугольников, прилежащих к боковым сторонам и меньшему основанию трапеции.
решебник №1 / номер / 835
835	Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площадей трёх треугольников, прилежащих к боковым сторонам и меньшему основанию трапеции.
решебник №2 / номер / 835
835	Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площадей трёх треугольников, прилежащих к боковым сторонам и меньшему основанию трапеции.
решебник №2 / номер / 835
835	Через концы меньшего основания трапеции проведены две параллельные прямые, пересекающие большее основание. Диагонали трапеции и эти прямые делят трапецию на семь треугольников и один пятиугольник. Докажите, что площадь пятиугольника равна сумме площадей трёх треугольников, прилежащих к боковым сторонам и меньшему основанию трапеции.