ГДЗ по алгебре 9 класс Ю.Н. Макарычев номер 207

показать содержание

207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией.

Учебник / номер / 207
207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией.
видеорешение / номер / №207
решебник / номер / 207
207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией.
решебник №2 / номер / 207
207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией. 207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией.
решебник №3 / номер / 207
207. Известно, что у = f(x) и у = g(x) — возрастающие (убывающие) функции. Докажите, что функция ф(х) = f(x) + g(x) является возрастающей (убывающей) функцией.